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Abstract. The computation of Stokes flow due to the motion or presence of a rigid particle in a fluid-filled tube
with arbitrary geometry is discussed with emphasis on the induced upstream to downstream pressure change. It
is proposed that expressing the pressure change as an integral over the particle surface involving (a) the a priori
unknown traction, and (b) the velocity of the pure-fluid pressure-driven flow, simplifies the numerical implementa-
tion and ameliorates the effect of domain truncation. Numerical computations are performed based on the integral
formulation in conjunction with a boundary-element method for a particle translating and rotating inside a cylin-
drical tube with a circular cross-section. The numerical results are consistent with previous asymptotic solutions
for small particles, and complement available numerical solutions for particular types of motion.
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1. Introduction

When a particle translates and rotates under the influence of gravity or another external force
in a liquid-filled tube that is closed at both ends, it generates a pressure rise between the two
ends. If the tube is open at the ends and exposed to the same ambient pressure, the parti-
cle motion causes a net longitudinal flow rate. The pressure rise established in the case of a
closed tube is precisely equal to that necessary to annihilate the flow inside the open tube.
A similar situation occurs in the case of a particle that is freely suspended in pressure-driven
tube flow, depending on whether the axial flow rate or pressure difference due to the presence
of the particle is required to be zero. Multi-particle arrangements in fluid-filled conduits and
suspensions in tube flow behave in a similar fashion, with the particles making additive con-
tributions to the pressure rise or flow rate. Interest in describing the hydrodynamics of these
systems is motivated by applications in biomechanics, with particular interest in blood flow in
the microcirculation, as well as by engineering applications involving particulate flow through
porous media and the motion of small particles, macromolecules, and cells in fabricated mi-
crochannels.

A number of authors dating back to Happel and Byrne [1] have discussed the computation
of the force, torque, and pressure change due to the motion or presence of a spherical particle,
or a periodic file of spherical particles, in a cylindrical tube with a circular cross-section.
Asymptotic results for small particles and numerical results for arbitrarily sized particles posi-
tioned along the tube axis in axisymmetric flow were presented by Happel and Byrne [1],
Haberman and Sayre [2], and Wang and Skalak [3]. Asymptotic results for particles trans-
lating off the tube axis in non-axisymmetric flow were presented by Greenstein and Happel
[4] and Tözeren [5,6], and numerical results based on finite-element and boundary-element
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methods were presented by Tözeren [7], Graham et al. [8], Ingber [9] Mondy et al. [10],
and Higdon and Muldowney [11]. The complementary problem of flow due to particle rota-
tion was also addressed by several authors for axisymmetric and non-axisymmetric flow, as
reviewed by Zheng et al. [12]. Unfortunately in only a few of these studies the pressure rise
induced by the particle presence or motion was considered [1,3,4]. Instead, most authors have
concentrated on the computation of the hydrodynamic force and torque exerted on a fixed
or moving particle. In an extension of their earlier work motivated by applications in biome-
chanics, Chen and Skalak [13] considered axisymmetric flow past a file of oblate or prolate
spheroidal particles oriented along the axis of a circular tube. Other authors derived asymp-
totic results for tightly fitting particles that nearly occlude the tube cross-section, as well as
for small particles with arbitrary shape moving inside tubes with arbitrary cross-section, as
reviewed by Falade and Brenner [14].

The present work is motivated by a desire to develop an efficient numerical method that
is capable of handling particles with arbitrary shape and size, and tubes with arbitrary cross-
section and possibly curved and tapered shapes. The point of departure is the boundary-inte-
gral formulation of Stokes flow, resulting in a Fredholm integral equation of the first kind
for the boundary traction, which is solved by a boundary-element method. In this approach,
the boundary of the computational domain, including the tube surface, the particle surface,
and possibly the surface of two physical or artificial tube caps, are discretized into bound-
ary elements, and the element traction is approximated with a polynomial expansion. One
concern in the implementation of the numerical method is the choice of boundary condi-
tions at the top and bottom tube caps. If the flow rate is specified, the method requires
incorporating the a priori unknown upstream to downstream pressure difference due to the
particle presence or motion, �p, in the integral formulation. On the other hand, if �p is spec-
ified, the method requires incorporating the a priori unknown streamwise flow rate. Because
of the linearity of the equations of Stokes flow, one choice yields the other by rescaling.
Specifying the flow rate instead of the pressure drop is more convenient in the numerical
implementation.

Higdon and Muldowney [11] computed resistance functions for spherical particles in cylin-
drical tubes using a highly accurate spectral boundary-element method, and deduced �p as
part of the solution by imposing a constraint on the axial flow rate. The authors argued that
using the traction boundary condition involving �p instead of the velocity boundary con-
dition at the tube caps minimizes the effect of domain truncation. However, in light of the
uniqueness of Stokes flow, the stress boundary conditions should imply the velocity bound-
ary condition, and vice versa, and the two choices should be identical. Ingber [9] and Mondy
et al. [10] are silent on the issue of the top and bottom boundary conditions, and most likely
perform the usual element discretization of all boundaries, and solve for the normal and tan-
gential components of the traction.

In this article, it is shown that expressing the top to bottom pressure difference �p as
an integral over the particle surface involving the traction and the velocity of the undis-
turbed pure-fluid pressure-driven flow, yields an efficient numerical method that allows us to
obtain reasonably accurate results even for crude particle and tube surface discretizations,
and thereby ameliorates the effect of domain truncation. Though numerical results will be
presented using an entry-level boundary-element method where the hydrodynamic traction is
approximated with a constant function over the individual elements, extending the basic for-
mulation to high order and spectral element methods is straightforward. An analogous inte-
gral representation for the induced pressure difference is also possible for flow past bubbles,
drops, and capsules through tubes, as will be discussed in the concluding section.
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Figure 1. (a) Schematic illustration of Stokes flow in a tube due to the motion of, or past a rigid particle. (b) Flow
in a cylindrical tube with a circular cross-section of radius b.

2. Problem statement and integral formulation

Consider a rigid particle translating and rotating inside a liquid-filled tube that is closed at
both ends in an otherwise quiescent fluid, as shown in Figure 1(a). If the tube caps are suffi-
ciently far from the particle, the fluid near the caps is virtually stationary, and the pressure
assumes the value pB over the bottom cap, and the value pT over the top cap. The primary
objective of the analysis is to evaluate the force and torque exerted on the particle, as well
as the pressure rise �p≡pT −pB , as a function of the particle shape and size relative to the
tube.

If the flow occurs at sufficiently small Reynolds numbers, the velocity field induced by the
particle motion, u, can be described by the integral representation of Stokes flow as

uj (x0)=− 1
8πµ

∫∫
P,C,B,T

Gij (x,x0)fi(x)dS(x), (2.1)

where µ is the fluid viscosity, f ≡σ ·n is the surface traction, σ is the Newtonian stress tensor,
n is the unit normal vector pointing into the fluid, and P,C,B,T stand, respectively, for the
surface of the particle, the surface of the conduit represented by the tube, and the surface of
the bottom and top tube caps, as shown in Figure 1(a) (e.g., [15]). The kernel of the integral
representation, Gij , is the Stokes flow free-space Green’s function, given by

Gij (x,x0)= δij

|x −x0|
+ (xi −x0i

)(xj −x0j
)

|x −x0|3
, (2.2)

where δij is Kronecker’s delta. Physically, Gij (x,x0)/(8πµ) is the ith velocity component at
the point x due to a point force of unit strength located at the point x0, pointing in the j th
direction.

Theoretical analyses have shown that the velocity due to the particle motion decays expo-
nentially with distance along the tube axis toward the profile of a pressure-driven flow (e.g.,
[16]). If the induced flow rate is zero, as presently assumed, the velocity decays exponentially,
and the pressure tends toward an upstream and a downstream value. Liron and Shahar [16]
and Blake [17] showed that, in the case of an infinite circular cylinder of radius b, and when
the particle is modeled as a point force positioned at the centerline pointing along the cylin-
der axis, decay occurs through an infinite sequence of toroidal eddies with approximate wave
length λ�2·15b. The rate of decay is approximately exp(−4·47x/a), which means that it takes
approximately one tube radius for the velocity to decay to 1% of the value multiplying the
exponential. Given this fast decay, it is unlikely that corner eddies and other end-effects have
any significant influence in the overall structure of the flow. In the case of a closed, semi-infi-
nite or finite circular cylinder, decay occurs through a finite sequence of toroidal eddies that
terminate at the caps [17]. It is then reasonable to write
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f �−pBn +O(exp(−Ad), (2.3)

over the bottom cap, where A is a positive constant, and d is the distance of the particle from
the bottom cap. Introducing the approximation, f �−pBn over the bottom cap, and likewise,
f �−pT n over the top cap, reduces the integral representation (2.1) to

uj (x0)=− 1
8πµ

[∫∫
P,C

Gij (x,x0)fi(x)dS(x)

−pB

∫∫
B

Gij (x,x0)ni(x)dS(x)−pT

∫∫
T

Gij (x,x0)ni(x)dS(x)
]
. (2.4)

The force exerted on the particle, and the torque with respect to the designated particle cen-
ter, xc, exerted on the particle are given by

F =
∫∫

P

fdS, T=
∫∫

P

(x −xc)× fdS. (2.5)

These integrals can be computed after the solution for the boundary traction, f , and simul-
taneously for the pressures pB and pT have been found.

A standard method of computing the flow due to the particle motion involves discretiz-
ing the surface of the particle, P , and the surface of the conduit, C, into boundary elements,
applying the integral representation at collocation points located at element centroids, and
enforcing the no-slip and no-penetration boundary conditions to derive a system of linear
equations for the boundary-element tractions. Since the pressure is only defined up to arbi-
trary constant, we may set without loss of generality pB = 0. One more equation is required
for computing the pressure over the top cap, pT . In principle, this equation can arise by intro-
ducing a collocation point at the bottom or top cap. A serious drawback of this method is
a pronounced numerical sensitivity, and the need to evaluate with high accuracy pertinent
boundary integrals.

An alternative formulation employs the Green’s function for Stokes flow in the tube under
consideration, denoted by Gij (x,x0). Physically, Gij (x,x0)/(8πµ) is the ith velocity compo-
nent at the point x due to a point force of unit strength located at the point x0 pointing in
the j th direction, subject to the conditions of zero velocity over the tube wall, and decaying
velocity upstream and downstream, far from the point force. The boundary-integral formula-
tion provides us with an integral representation for the velocity field as a single-layer potential
over the particle surface alone,

uj (x0)=− 1
8πµ

∫∫
P

Gij (x,x0)fi(x)dS(x), (2.6)

thereby bypassing the computation of the induced pressure difference. Unfortunately, the
Green’s function for tube flow is available only for a cylindrical conduit with a circular
cross-section due to Hirschfeld [18], Hasimoto [19], Liron and Shahar [16], Blake [17], and
Hirschfeld et al. [20]. Even so, the evaluation of the final expressions carries a heavy com-
putational burden because of the presence of a multitude of Bessel functions. For periodic
flows and more general tube geometries, the Green’s function can be computed by numerical
methods and then reproduced from look-up tables, though the interpolation introduces fur-
ther sources of numerical error [21].

2.1. Integral representation for the streamwise pressure difference

To compute the tube cap pressure difference, we apply the Lorentz reciprocal theorem of
Stokes flow (e.g., [15,22]) for a pair of flows consisting of (a) the flow due to the particle
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motion presently considered, and (b) pressure-driven flow through the conduit in the absence
of the particle, denoted by the superscript PDF , and obtain

∫∫
P,C,B,T

u · fPDF dS =
∫∫

P,C,B,T

uPDF · f dS. (2.7)

Since the velocity of both flows is zero over the conduit surface, u = 0 and uPDF = 0 on C,
and the velocity due to the particle motion is almost zero over the bottom and top caps of a
long tube, u�0 on B,T , the corresponding integrals in (2.7) disappear. Introducing the afore-
mentioned approximation f �−pB n over the bottom cap and f �−pT n over the top cap, and
simplifying, we find

∫∫
P

u · fPDF dS =
∫∫

P

uPDF · f dS − (pB −pT )QPDF , (2.8)

where

QPDF ≡
∫∫

B

uPDF ·n dS =−
∫∫

T

uPDF ·n dS (2.9)

is the streamwise flow rate of the pressure-driven flow in the absence of the particle. Setting
the velocity over the particle surface equal to u=V+�× (x−xc), where V is the translational
velocity of the designated particle center, xc, and � is the particle angular velocity about xc,
we find

U ·
∫∫

P

fPDF dS −� ·
∫∫

P

(x −xc)× fPDF dS =
∫∫

P

uPDF · f dS − (PB −PT )QPDF . (2.10)

Force and torque equilibrium in Stokes flow require that the two integrals on the left-hand
side are zero. Rearranging the resulting equation, we obtain Brenner’s [23] integral represen-
tation

�p ≡pT −pB =− 1
QPDF

∫∫
P

uPDF · f dS, (2.11)

which provides us with an expression for the pressure difference, �p, in terms of the a priori
unknown traction over the particle surface and the velocity of the unperturbed pressure-
driven flow, to be used instead of point collocation over the top or bottom tube cap. It
is reassuring to observe that the traction over the particle surface inside the integral on
the right-hand side of (2.11) can be enhanced with an arbitrary multiple of the normal
vector. Because the velocity field of the pressure-driven flow is assumed to be solenoidal,∫∫

P
uPDF ·n dS =0, this modification does not alter the computed pressure change.

Physically, the integral representation (2.11) expresses the additive contribution of the pres-
sure differences due to point forces distributed over the particle surface, where the strength
of the point forces is equal to the negative of the particle surface traction. In fact, compar-
ing (2.11) with (2.6), we find that the pressure difference associated with the tube-flow Green’s
function is given by

�Pi (x0)= 8π

QPDF
uPDF

i (x0). (2.12)

This formula can be derived independently, by applying once again the Lorentz reciprocal
theorem for the pressure-driven flow and the singular flow induced by a point force in the
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absence any particles, with velocity u and stress σ . Simplifying by use of the boundary con-
ditions, we find

∫∫
B,T

uPDF · f dS =−
∫∫∫

uPDF ·∇ ·σ dV, (2.13)

where the volume integral on the right-hand side is computed over the volume of the tube
enclosed by the tube wall and end caps. To complete the proof, we write

�p = 1
8π

�Pibi , ∇ ·σ =−δ(x −x0)b, (2.14)

where b is the vectorial strength of the point force, and δ is Dirac’s three-dimensional delta
function. Substituting these expressions in (2.13) and simplifying, we obtain (2.12).

2.2. Small-particle asymptotics

When the particle size is small compared to the linear dimension of the tube cross-section,
we may evaluate the velocity of the pressure-driven flow inside the integral on the right-hand
side of (2.11) at a designated particle center, xc, to obtain Brenner’s approximation [23]

�p �− 1
QPDF

uPDF (xc) ·F. (2.15)

At this level, we may also approximate the actual force exerted on the particle, F, with the
force exerted on the particle when it moves in an infinite fluid, F∞. The linearity of the equa-
tions of Stokes allows us to write

F∞ ≡−µR∞ ·Q, (2.16)

where Q = [Vx,Vy,Vz,�x,�y,�z]T is the generalized particle velocity vector, and R∞ is the
6×6 grand resistance tensor for flow in an infinite fluid. For example, in the case of a spheri-
cal particle of radius a whose centered is placed at the point xc inside the tube, we use Stokes’
law and invoke the reversibility of Stokes flow to find R∞ = 6πµa[I,0], where I is the 3 × 3
unit matrix and 0 is the 3×3 null matrix. Substituting (2.16) in (2.15), we derive the asymp-
totic expression

�p � µ

QPDF
uPDF (xc) ·R∞ ·Q. (2.17)

2.3. Numerical implementation

To illustrate the implementation of the numerical method based on the formulation described
previously in this section, we set pB = 0, and recast the integral representation (2.4) into the
form

∫∫
P,C

Gij (x,x0)fi(x)dS(x)−pT

∫∫
T

Gij (x,x0)ni(x)dS(x)=−8πµuj (x0). (2.18)

Next, we discretize the tube (conduit) surface into NC boundary elements and the particle
surface into NP boundary elements, and approximate the components of the traction with
constant functions over each element. The no-slip and no-penetration boundary conditions
require that u = 0 over the conduit elements, and u = V + � × (x − xc) over the particle ele-
ments. Identifying the evaluation point x0 in (2.18) sequentially with the particle and cylinder
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element centroids, and appending to the resulting system of algebraic equations the discretized
version of the integral representation (2.11) with pB =0, we derive the master linear system




PP PC pT

CP CC cT

wP 0 1




·

 fP

fC
pT


=


bP

0
0


 , (2.19)

subject to the following definitions:

• PP is a 3NP × 3NP particle self-influence matrix, PC is a 3NP × 3NC particle-cylinder
influence matrix, CP is a 3NC ×3NP cylinder-particle influence matrix, and CC is a 3NC ×
3NC cylinder self-influence matrix, The influence matrices are defined in terms of the sin-
gle-layer potential over the boundary elements.

• The 3NP -dimensional horizontal vector wP is defined such that

wP · fP +pT =0 (2.20)

is the discrete representation of (2.11) with pB =0. The adjacent entry, 0, is a 3NC-dimen-
sional horizontal null vector.

• The 3NP -dimensional vertical vector pT and corresponding 3NC-dimensional vertical vec-
tor cT contain the xx, xy, and xz components of the single-layer potential integrated over
the top cylinder cap and evaluated, respectively, at the particle and cylinder collocation
points.

• The vector of unknowns on the left-hand side of (2.19) is comprised of a 3NP -dimen-
sional vector holding the Cartesian components of the particle-element tractions, fP , a
3NC-dimensional vector holding the Cartesian components of the cylinder-element trac-
tions, fC , and the scalar top-cap pressure, pT .

• The vector bP on the right-hand side of (2.19) encapsulates the right-hand side of the inte-
gral equation (2.18) evaluated at the particle collocation points.

A test of accuracy in the evaluation of the influence matrices can be performed based on
the integral identities∫∫

P

Gij (x,x0)ni(x)dS(x)=0,

∫∫
C,B,T

Gij (x,x0)ni(x)dS(x)=0, (2.21)

for an arbitrary evaluation point, x0, originating from the continuity equation (e.g., [15]). The
discretized versions of these identities are

PP ·nP =0,

CP ·nP =0,

PC ·nC +pB ·nB +pT ·nT =0, (2.22)

CC ·nC + cB ·nB + cT ·nT =0,

where the bottom-cap vectors, pB and cB , are defined by analogy with the aforementioned
top-cap vectors, pT and cT , and the vector nP holds the unit normal vector at the particle col-
location points. The vectors nC , nB , and nT are similarly defined. In the computations for a
cylindrical tube with a circular cross-section of radius b discussed in Section 4, the right-hand
sides of Equations (2.22) were confirmed to be on the order of 10−4 b.
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Once the master linear system (2.19) has been compiled, the solution can be found by
block Jacobi diagonalization, based on the splitting




PP 0 0

0 CC 0

0 0 1




·

 fP

fC
pT


=


bP

0
0


−




0 PC pT

CP 0 cT

wP 0 0




·

 fP

fC
pT


 . (2.23)

The numerical procedure involves the following steps:

1. Assume pT =0 and fC =0, which amounts to ignoring the presence of the tube.
2. Solve for the particle traction vector, fP , using the first block of (2.23).
3. Compute the top-cap pressure, pT , using the third block of (2.23).
4. Compute the cylinder surface traction vector, fC , using the second block of (2.23).
5. Return to step 2 and repeat until convergence.

In the computations presented in Section 3 for a circular tube, the number of iterations for
the error in the solution of the master linear system to become comparable to the discreti-
zation error ranges from 3 to 10, depending on the particle size relative to the tube radius.
In the numerical implementation, the block-Jacobi iterations were carried out based on the
inverses of the tube and particle self-interaction matrices, according to the symbolic algorithm


 fP

fC
pT




(k+1)

=




P−1
P 0 0

0 C−1
C 0

0 0 1




·





bP

0
0


 −




0 PC pT

CP 0 cT

wP 0 0




·

 fP

fC
pT




(k)




, (2.24)

where the superscript (k) denotes the kth iteration.
Because the block-diagonal matrices and their inverses on the right-hand sides of (2.23)

and (2.24) are independent of the relative location of the particle and cylinder, they need to
be evaluated only once in studies of multiple configurations. Additional reduction in compu-
tational cost is possible on the observation that, if the particle is expanded or reduced by an
arbitrary factor, the corresponding self-interaction matrix and its inverse are merely multiplied
or divided by the expansion or shrinkage factor. Moreover, if the particle is rotated about an
arbitrary direction, the new self-interaction matrix can be constructed using the standard rules
of tensor transformation. Accordingly, these matrices need to be evaluated only for one par-
ticle size and orientation, and may then be rescaled or transformed to accommodate other
particle sizes and orientations. Similar transformations are possible for the cylinder self-inter-
action matrix.

Now, because of the first integral identity in (2.21), the self-interaction matrix, PP , and
the mutual-influence matrix, CP , are nearly singular. Consequently, the inverse matrix P−1

P

employed in the iterations is poorly conditioned. To overcome this difficulty, the integral
equation is regularized by adding to the right-hand side of (2.1) the deflating term

ni(x0)

∫∫
P

n(x) · f(x)dS(x), (2.25)

which removes the null eigenvalue of the single-layer potential (e.g., [15]).
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Integrating the equations of Stokes flow over the volume of fluid enclosed by the tube and
particle, we derive the global force balance

R≡
∫∫

P,C,B,T

f dS(x)=0, (2.26)

where R stands for the residual. The satisfaction of (2.26) provides us with a measure of accu-
racy of the numerical method. In computations for a cylindrical tube with a circular cross-sec-
tion of radius b, discussed in Section 4, the discrete representation of (2.26) is

R≡AP · fP +AC · fC +�Pπb2


1

0
0


=


0

0
0


 , (2.27)

where the 3 rows of the 3 × 3NP matrix AP contain the twice duplicated string of
particle-element surface areas, and the 3 rows of the 3 × 3NC matrix AC contain the twice
duplicated string of cylinder-element surface areas. In the computations discussed in Section
3, the magnitude of the residual is less than 1% of the maximum term in (2.27).

3. Generalization to pressure-driven and periodic flow

In Section 2, we discussed the problem of particle motion in a closed or otherwise long tube,
in an otherwise quiescent fluid. The derivations can be generalized to more general circum-
stances, including flow past a stationary or freely suspended particle, flow past a periodic
arrangement of particles in a cylindrical tube with arbitrary cross-section, and flow past a
multitude of particles in a suspension.

3.1. Particle motion in pressure-driven flow

Introducing a stationary or freely moving particle in a pressure-driven tube flow affects either
the pressure change, or the flow rate, or both. For example, in pumping a suspension through
a tube, we can either hold the flow rate constant, or the pumping head fixed, or vary both
at will. A corresponding degree of freedom arises in the mathematical analysis of pressure-
driven particulate flow. However, because of the linearity of the equations of Stokes flow, the
results for one chosen set of conditions can be rescaled to describe any other condition.

Assuming that the perturbation velocity due to the particle decays far from the particle,
and therefore the presence of the particle does not affect the streamwise flow rate, QPDF , we
find that the perturbation velocity, u′, is given by the counterpart of (2.4),

u′
j (x0)=− 1

8πµ

[∫∫
P,C

Gij (x,x0)fi(x)dS(x)

(3.1)

−p′
B

∫∫
B

Gij (x,x0)ni(x)dS(x)−p′
T

∫∫
T

Gij (x,x0)ni(x)dS(x)
]
,

where a prime denotes a perturbation quantity. The additional pressure difference due to the
particle is given by the counterpart of (2.11),

�p′ ≡p′
T −p′

B =− 1
QPDF

∫∫
P

uPDF · f dS. (3.2)

The no-slip and no-penetration boundary conditions require that the velocity over the particle sur-
face expresses rigid-body motion, u=uPDF+u′=V+�× (x−xc) or u′ =−uPDF +V+�× (x−xc)
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over the particle elements. In the boundary-element formulation, this boundary condition is
implemented in the first vector block, bP , on the right-hand side of the linear system (2.19).

Alternatively, the force exerted on a particle that is held stationary in pressure-driven flow,
F, can be computed from the results of particle motion in a closed tube, without repeating the
boundary-element solution. Applying the reciprocal theorem for this flow and the flow due
to the particle translating with velocity U inside the tube in an otherwise quiescent fluid, and
simplifying, we find

U ·F =−QPDF �P T −
∫∫

P

uPDF · fT dS, (3.3)

where the superscript T denotes that the underlying value corresponds to particle translation.
Repeating for a particle rotating with angular velocity W in an otherwise quiescent fluid, we
find that the torque exerted on a particle that is held stationary in pressure-driven flow, T, is
given by

W ·T=−QPDF �P R −
∫∫

P

uPDF · fRdS, (3.4)

where the superscript R signifies that the underlying value corresponds to particle rotation.
The last two equations provide us with the components of the force and torque in the
directions of the translational and angular velocities, in terms of the corresponding pressure
changes and particle tractions. Unfortunately, it does not appear possible to derive a corre-
sponding expression for the particle-induced pressure change in pressure-driven flow in terms
of known results for translation and rotation.

3.2. Particle moving under a specified force and torque

In practical applications, the force, F, and torque, T exerted on the particle are specified, and
the particle translational and angular velocities are computed as part of the solution. This
mobility problem can be formulated by extending the linear system (2.19) corresponding to
the resistance problem to




PP eV e� PC pT

qP 0 0 0 0

hP 0 0 0 0

CP 0 0 CC cT

wP 0 0 0 1




·




fP
V
�

fC
pT




=




bP

F
T
0
0




, (3.5)

where qP , hP are appropriate 3×3NP sub-matrices compiled such that the second and third
blocks of (3.5) are the discrete manifestations of the scalar components of (2.5), and eV , e�

are appropriate 3NP × 3 sub-matrices accommodating the boundary condition of rigid-body
motion at the particle collocation points. The solution can be found by a variant of the iter-
ative method discussed in Section 2.1, where the iterations are based on the block diagonal-
ization indicated by the double horizontal and vertical partitioning lines on the left-hand side
of (3.5).
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Figure 2. Schematic illustration of periodic flow
through a cylindrical tube with arbitrary cross-sec-
tion.

Figure 3. Discretization of the surface of a spherical
particle into NP =512, six-node curved elements, and
of the surface of the cylinder into NC =32×32=1024
quadrilateral elements with two straight and two cir-
cular edges. In the boundary-element method, the
traction components are approximated with constant
functions over each element.

3.3. Periodic flow in a tube

The expressions for the pressure difference due to the motion or presence of an effectively
isolated particle can be generalized to periodic flow through a straight or circular tube with
arbitrary cross-section, as illustrated in Figure 2. In the case of a straight tube, the periodic-
ity condition requires that the velocity distributions over two planar or warped cross-sections
of the tube that are periodic images of one another in the downstream direction, x, denoted
as B ant T in Figure 2, are identical.

Working as in Section 2.1, we derive the integral identity (2.7) involving the flow of inter-
est due to the motion of the periodic array of particles, and the pure-fluid pressure-driven
flow. Next, we note that the velocity of both flows is zero over the conduit surface, and sim-
plify by the use of the aforementioned periodicity condition for the velocity to find∫∫

P

u · fPDF dS +�pPDF Q=
∫∫

P

uPDF · f dS +�pQPDF , (3.6)

where

Q≡
∫∫

B

u ·n dS =−
∫∫

T

u ·n dS (3.7)

is the streamwise flow rate of the flow due to the particles. Working as in Section 2.1, we find

�p = 1
QPDF

(
Q�pPDF −

∫∫
P

uPDF · f dS

)
. (3.8)

We may now specify either Q or �p, and solve for the complementary unknown using the
boundary-element method described earlier in Section 2.

3.4. Multi-particle arrangements and suspensions

All of the preceding results can be generalized to multi-particle arrangements and suspen-
sion flows, by replacing the particle surface, P , with the union of the particle surfaces. The
results for the pressure change in periodic flow in a cylindrical tube are especially notewor-
thy because of their applicability in dynamical simulations of the flow of suspensions where
periodic boundary conditions are imposed.
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4. Particle motion in a circular cylinder

In the case of a cylindrical tube with a circular cross-section of radius b, depicted in
Figure 1(b), we use the parabolic profile of the unidirectional Poiseuille flow, uPDF

x (σ ) =
Vc(1 − σ 2/b2), and Poiseuille’s law, QPDF = 1

2Vcπb2, where Vc is the centerline velocity, and
σ is the distance from the tube axis. Expression (2.11) for the pressure difference then takes
the specific form

�p =− 2
πb2

∫∫
P

(
1− σ 2

b2

)
fx dS. (4.1)

Setting pB =0 and approximating the integral with a sum of integrals over the particle surface
elements, we obtain

pT =− 2
πb2

NP∑
i=1

(
1− σ 2

i

b2

)
Sifxi

, (4.2)

where the subscript i denotes evaluation at the centroid of the ith element, and Si is the ele-
ment surface area. Comparing this expression with (2.20), we deduce the ith component of
the dimensionless vector wP ,

wPi
= 2

πb2

(
1− σ 2

i

b2

)
Si, (4.3)

for i =1, . . . ,NP , and wPi
=0 for i =NP +1, . . . ,3NP .

Since the normal vector points against the x axis over the top cap, the components of the
top-cap integral vectors pT and cT shown in (2.19) contain the x, y, and z components of the
diskoidal integral∫∫

T

Gxi(x,x0)dS(x), (4.4)

evaluated at the particle or cylinder collocation points, x0. In the numerical method, these
integrals were computed by applying the trapezoidal rule with 128 divisions to integrate with
respect to the azimuthal angle, ϕ, and the 20-point Gaussian quadrature to integrate with
respect to the radial position, σ .

4.1. Boundary-element method

The boundary-element method outlined in Section 2.3 was implemented for a particle with
arbitrary shape and size. The particle surface was discretized into NP quadratic elements
defined by 6 nodes, descending from the successive subdivision of a regular octahedron (e.g.,
[24]). Figure 3 shows the discretization of the surface of a spherical particle for NP = 512
used for the computations discussed later in this section. The surface of a truncated section of
the cylinder of length L was divided into cylindrical quadrilateral elements whose edges are
defined by the intersections of Nx evenly spaced planes that are normal to the x axis, and
Nϕ evenly spaced azimuthal planes, as shown in Figure 3. The total number of boundary ele-
ments over the cylindrical surface is NC =Nx ×Nϕ .

The influence coefficients consisting of integrals of the Green’s function over the parti-
cle elements were computed by standard boundary-element methods [24]. The corresponding
influence coefficients over the cylindrical elements were computed either by a double quadra-
ture, or by first performing the integration analytically with respect to x, and then applying
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Figure 4. The single-layer influence coefficients over
a cylindrical element are computed by performing
the x-integration analytically, and the φ integration
numerically.
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Figure 5. Illustration of a spherical particle of radius
a, translating and rotating inside a circular tube of
radius b.

the 6-point Gauss-Legendre quadrature to integrate with respect to ϕ. The second method is
necessary for handling the logarithmic singularity of the integrand over singular elements. To
perform the analytical integration, we consider a cylindrical element of radius b, as depicted
in Figure 4, and express the influence coefficient in the form

Iij (x0)≡
∫∫

E

Gij (x,x0)dS(x)

=b

∫ ϕ2

ϕ1

∫ x2

x1

(
δij

|x −x0|
+ (xi −x0i

) (xj −x0j
)

|x −x0|3
)

dx dϕ, (4.5)

where E denotes the element. Substituting for the integration point y =b cosϕ, z=b sin ϕ, and
for the evaluation point y0 =σ0 cosϕ0, σ0 =a sin ϕ0, where σ0 is the distance of the evaluation
point x0 from the x axis, and writing

|x −x0|2 = (x −x0)
2 + (b+σ0)

2 −4bσ0 cos
φ̂

2
, (4.6)

where ϕ̂ =φ −φ0, we find

Iij (x0)=b

∫ ϕ2

ϕ1

Kij (x1, x2, ϕ, x0, ϕ0)dϕ. (4.7)

The ϕ-dependent kernels are given by

Kxx =2F − x2 −x0

|x2 −x0|
+ x1 −x0

|x1 −x0|
,

Kxy =−(b cosϕ −σ0 cosϕ0)

(
1

|x2 −x0|
− 1

|x1 −x0|
)

,

Kxz =−(b sin ϕ −σ0 sin ϕ0)

(
1

|x2 −x0|
− 1

|x1 −x0|
)

,

(4.8)
Kyy =F + (b cosϕ −σ0 cosϕ0)

2

(b+σ0)
2 −4bσ0 cos φ̂

2

( x2 −x0

|x2 −x0|
− x1 −x0

|x1 −x0|
)
,

Kyz = (b cosϕ −σ0 cosϕ0)(b sin ϕ −σ0 sin ϕ0)

(b+σ0)
2 −4bσ0 cos φ̂

2

( x2 −x0

|x2 −x0|
− x1 −x0

|x1 −x0|
)
,

Kzz =F + (b sin ϕ −σ0 sin ϕ0)
2

(b+σ0)
2 −4bσ0 cos φ̂

2

( x2 −x0

|x2 −x0|
− x1 −x0

|x1 −x0|
)
,
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where

F ≡ log
(x2 −x0 +|x2 −x0|

x1 −x0 +|x1 −x0|
)
. (4.9)

When σ0 =a and x1 ≤x0 ≤x2, whereupon the evaluation point lies in the tube section hosting
the element, a logarithmic singularity occurs in the function F as ϕ → ϕ0. To compute the
corresponding integral, we regularize the integrand by writing

F = log
(x2 −x0 +|x2 −x0|

x1 −x0 +|x1 −x0|
(ϕ −ϕ0)

2
)

− log(ϕ −ϕ0)
2, (4.10)

and then perform the integration of the second term on the right-hand side by elementary
methods.

4.2. A spherical particle translating parallel to the tube axis

As a first case study, we consider the flow induced by a translating spherical particle of radius
a, positioned at a distance σP from the tube axis, as illustrated in Figure 5. Since translation
normal to the cylinder generators does not produce a pressure difference, �p, we confine our
attention to the case of motion along the tube axis.

For sufficiently small particle to tube radius ratio, δ ≡ a/b, we may apply the asymptotic
expression (2.17) to obtain the estimate

�p � 12µaVx

b2
(1−β2), (4.11)

accurate to first order in δ, where β ≡ σP /b is the reduced radial particle position, and Vx

is the particle velocity. Motivated by this expression, we introduce the dimensionless pressure
coefficient cT (β, δ), defined by

�p ≡ 12µaVx

b2
(1−β2) cT , (4.12)

where cT (β, δ → 0) = 1. Happel and Byrne [1] and Greenstein and Happel [4] performed a
detailed calculation using the method of reflections, and derived the asymptotic expansion

cT =1+f (β) δ +
(
f 2(β)− 2

3(1−β2)

)
δ2 +O(δ3). (4.13)

The function f (β) monotonically decreases from f (0) = 2·10444 to f (0·40) = 2·04388, and
then increases to f (0·90)=5·30 (e.g., [4]).

4.2.1. Axisymmetric flow
Wang and Skalak [3] presented numerical results for a particle positioned at the cylinder
axis, σP = 0 and β = 0, corresponding to axisymmetric flow. In particular, in their Table 5,
these authors list a pressure coefficient, PU , that is related to the present pressure coefficient
by cT = δPU/12. Setting β = 0 and f (0) = 2·10444, we find that Greenstein and Happel’s [4]
expansion for axial translation in axisymmetric flow takes the specific form

cT =1+2·10444 δ +3·7620 δ2 +O(δ3). (4.14)

In an earlier study, Happel and Byrne [1] derived the more accurate Padé-like expansion

cT = 1− 2
3 δ2

1−f (0) δ +2·087 δ3
. (4.15)

To second-order in δ, (4.15) reduces to (4.14).
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Figure 6. Graph of the pressure coefficient, cT , plot-
ted against the particle to cylinder radius ratio, δ =
a/b, for a sphere translating along the axis of a
cylindrical tube.
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Figure 7. Distribution of the normalized pressure and
shear stress along the cylinder length for a particle of
radius a=0·5b, translating along the cylinder axis, for
two cylinder truncation levels.

Figure 6 shows a graph of the pressure coefficient, cT , plotted against the particle to cyl-
inder radius, a/b, for small and moderate particle radii. The hollow squares and diamonds
represent results of boundary-element computations for cylinder truncation levels, respectively,
L=2πb and πb, NP =512 particle elements, and NC =32×32=1024 cylinder elements. In a
previous calculation, Mondy et al. [10] used a maximum of 176 cylinder elements. The com-
putation of the inverses of the corresponding self-interaction matrices discussed in Section 2
requires, respectively, 20 and 250 min of CPU time on a 2·4 GHz processor. The dashed line
represents the asymptotic results of Greenstein and Happel [4] expressed by (4.14), the dot-
dashed line represents the asymptotic results of Happel and Byrne [1] expressed by (4.15), and
the circles connected by the dotted line represent the numerical results of Wang and Skalak
[3, Table 5]. The accuracy of the boundary-element computations is excellent or very good
for particle radii a < 0·3 b, but the numerical error becomes substantial for higher particle
radii due to the small number of boundary elements over the tube wall. The filled squares
and diamonds show the results of the heuristic correlation, �P �−2 FPx /(πb2), where FPx is
the x-component of the force exerted on the particle, computed using the boundary-element
method. It is interesting that the heuristic correlation is in excellent agreement with the
virtually exact results of Wang and Skalak [3], even for larger particle radii.

Figure 7 illustrates the distribution of the pressure and shear stress along the cylinder
length, both rendered dimensionless by µVx/b, for a particle of radius a =0·5b. On a no-slip
surface, the pressure is equal to the negative of the normal component of the traction. Results
in Figure 7 are shown for cylinder truncation levels, L=2πb and πb, with the short horizon-
tal segments on the right end of each distribution for the pressure representing the top cyl-
inder-cap pressure, as it emerges from the boundary-element solution. The graphs show that
the short truncation length, L=πb, is long enough for the shear stress and pressure to reach
the upstream and downstream plateaus. For this particle size, the fineness of the cylinder sur-
face discretization determined by the truncation level has a significant effect on the accuracy
of the boundary-element solution.

The distribution of the shear stress for L=πb shown in Figure 7 remains negative over the
whole of the computational domain. The corresponding distribution for L=2πb changes sign
twice, once at x/b�1·0 and then at 1·6. The change in sign is consistent with the formation
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Figure 8. Graph of the pressure coefficient, cT ,
for a sphere translating off the axis of a cylindri-
cal tube.
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Figure 9. Distribution of the normalized pressure over the
cylinder wall induced by a particle of radius a = 0·4 b

translating at a distance σP =0·5b from the tube axis.

of toroidal eddies of the flow due a point force identified by Liron and Shahar [16] and
Blake [17].

4.2.2. Non-axisymmetric flow
Next, we consider the pressure change due to a particle translating off and parallel to the
cylinder axis, generating a non-axisymmetric flow. Figure 8 shows a graph of the pressure
coefficient, cT , plotted against the particle to cylinder radius ratio, a/b, for radial parti-
cle center positions β ≡ σP /b = 0·1 and 0·5. The symbols represent the results of the pres-
ent boundary-element computations with the aforementioned number of boundary elements
and cylinder truncation level L = πb, and the broken lines represent the predictions of the
Greenstein and Happel [4], expressed by (4.13). As in the case of axial translation along the
centerline, the asymptotic results are surprisingly accurate even for moderate particle radii,
though they tend to underestimate the pressure coefficient for larger particle sizes.

Figure 9 illustrates the distribution of the pressure rendered dimensionless by µVx/b over
the cylinder wall, for a particle of radius a =0·4b, translating at a distance σP =0·5b from the
tube axis. The clearance of the particle surface from the wall is 0·10b, The 32 × 32 grid dis-
played in this graph corresponds to the actual cylinder-element tessellation employed in the
computations over the truncated length L = πb. The results show that large pressure varia-
tions occur near the region of minimum particle-wall separation due to the local lubrication
flow, while the transition from the upstream to the downstream pressure elsewhere is smooth.
Far upstream, the cylinder pressure is nearly equal to the cap pressure plotted in Figure 8.

4.3. A spherical particle rotating transversely to the tube axis

As a second case study, we consider the flow induced by a spherical particle rotating about its
center inside a cylindrical tube. Since, by symmetry, rotation around the axis that is parallel
to the generators or normal to the tube axis generates neither a net force on the particle nor
a pressure difference across the tube, we consider rotation around an axis that points in the
azimuthal direction with angular velocity �ϕ . Greenstein and Happel [4] derived the asymp-
totic prediction
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Figure 10. (a) Graph of the pressure coefficient, cR , against the reduced particle radius, for a sphere rotating in the
azimuthal direction, for reduced radial particle center position β = 0·25 and 0·50. (b) Distribution of the normal-
ized pressure over the cylinder wall for a particle of radius a =0·4 b positioned at β =0·50.

�p = 16µa3 �ϕ

b3
β
(

1+O(δ)
)
, (4.16)

which motivates the definition

�P = 16µa3�ϕ

b3
β cR, (4.17)

where cR(δ, β) is a pressure change coefficient for rotation. When the particle is located at the
tube axis, β = 0, the pressure field is fore-and-aft symmetric, and a pressure difference does
not appear.

Figure 10(a) shows a graph of the pressure coefficient, cR, for a particle situated a quar-
ter and midway along a tube radius, β = 0·25 and 0·5, computed by the boundary-element
method with the element discretization discussion in Section 4.2, and cylinder truncation level
L=πb. To the author’s knowledge, the numerical results presented in this figure provide the
first independent confirmation of the correctness of Greenstein and Happel’s [4] asymptotic
prediction for the pressure rise in rotation.

As in the case of axial translation, as the particle radius increases, the pressure coefficient
rises at a nearly linear rate above the asymptotic value of unity. Thus, wall effects accentuate
the pressure change. Figure 10(b) illustrates the distribution of the pressure rendered dimen-
sionless by µ�ϕ over the cylinder wall, for a particle of radius a = 0·4b, and for β = 0·50.
Compared to translation, rotation induces a smaller pressure rise relative to the pronounced
peaks occurring in the gap between the particle surface and the wall.

4.4. A translating oblate spheroid

As a last case study, we consider the flow induced by the translation of an oblate spheroid
with aspect ratio 2·0 and equivalent to tube radius ratio, a/b = 0·35, where the equivalent
radius is related to the particle volume, V , by the equation V = 4πa3/3. The minimum and
maximum particle semi-axes are, respectively, 0·2205 b and 0·4410 b, to shown accuracy. The
spheroid is positioned with the flat face normal to the xy plane rotated at an angle ϕz

with respect to the z-axis, while the particle center lies on the tube axis, as illustrated in
Figure 11. Particle translation along the x-axis generates axisymmetric flow only in the trans-
verse configuration corresponding to ϕz =0. For any other configuration, the flow is genuinely
three-dimensional. Both configurations shown in Figure 11 have been observed in laboratory
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Figure 11. Discretization of an oblate spheroid with axes ratio equal to 2 and reduced equivalent ratio a/b = 0·35
in the transverse (left) and lateral (right) configuration, corresponding to φz =0 and π/2, respectively.

studies of red blood cell motion through microcapillaries, with the transverse configuration
being more common (e.g., [25,26]).

The boundary-element solution yields among other results the dimensionless drag force
coefficient, defined as cTD

≡ −Fx/(6πµaVx), where Fx is the force acting on the particle in
axial translation with velocity Vx . For particle surface discretization into NP = 512 elements,
and NC= 1024 cylindrical elements over the truncated length L=πb, as shown in Figure 11,
the computed drag coefficient, cTD

, is 3·76, 3·13, and 2·55, and the computed pressure differ-
ence coefficient, cT , is 3·29, 2·81, and 2·35, respectively, for orientation angles ϕz = 0, π/4,
and π/2. Thus, both coefficients decrease as the spheroid is rotated from the transverse to
the lateral configuration, which is believed to be a new result. For reference, we note that
the computed drag coefficient for a spherical particle of radius a is cTD

= 2·65, and the cor-
responding pressure difference coefficient is cT = 2·43, which are somewhat higher than the
corresponding coefficients for the lateral configuration. Based on the comparison between the
numerical results with the exact solution presented in Figure 6, the boundary-element numer-
ical solution is expected to carry an error on the order of 5% for this particle size. Indeed, a
theoretical calculation using Bohlin’s method of reflections (e.g., [27, p. 318] shows that, for
a spherical particle of radius a/b=0·35, the drag coefficient is cTD

=2·81.

5. Discussion

We have shown that expressing the pressure rise induced by a suspended particle in tube flow
as an integral of the a priori unknown particle traction facilitates and simplifies the numerical
implementation of the boundary-element method. It is possible that the integral represen-
tation for the pressure difference can be used in lieu of a downstream boundary condition
in Stokes flow computations using domain discretization method, including the finite-volume
and finite-element method, though testing this proposition is a topic for further research.
Some of the results of the numerical computations presented in this article using an entry-
level boundary-element method duplicate and confirm those of previous authors, while others
add to the data bank of particulate Stokes-flow hydrodynamics.

The theoretical results and algorithms developed in this article for rigid particles can
be extended in a straightforward fashion to bubbles, drops, and capsules enclosed by thin
membranes, in tube flow. Consider the flow induced by the motion of a liquid capsule in a
fluid-filled tube that is closed at both ends. Assuming that the velocity is continuous across
the interface, and applying the reciprocal theorem for the exterior and interior capsule flow,
we find that the induced pressure rise is given by [25,26]

�P =− 1
QPDF

∫∫
D

�f ·uPDF dS − λ−1
QPDF

∫∫
D

fPDF ·u dS, (5.1)
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where D stands for the capsule surface, λ is the ratio of the capsule fluid to the ambient fluid
viscosity, and �f is the jump in the interfacial traction due to an interfacial tension field.
The integral representation (5.1) is the counterpart (2.11) for interfacial flow. In the imple-
mentation of the boundary-element method, the integral representation (5.1) can be used to
relate the pressure difference across the tube to the jump in the interfacial traction and inter-
facial velocity. The latter is given by an integral representation in the case of equal viscosities,
λ=1, or must be computed by solving an integral equation of the second kind in the case of
unequal viscosities.

The basic boundary-element implementation presented in this article can be improved by
employing high-order and spectral-element expansions (e.g., [11]). Furthermore, multi-particle
arrangements and periodic flows can be addressed by straightforward extensions. Of particu-
lar interest due to its relevance in biomechanics is the motion of particles in bifurcating tubes.
The development of the pertinent algorithms is currently under way.
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